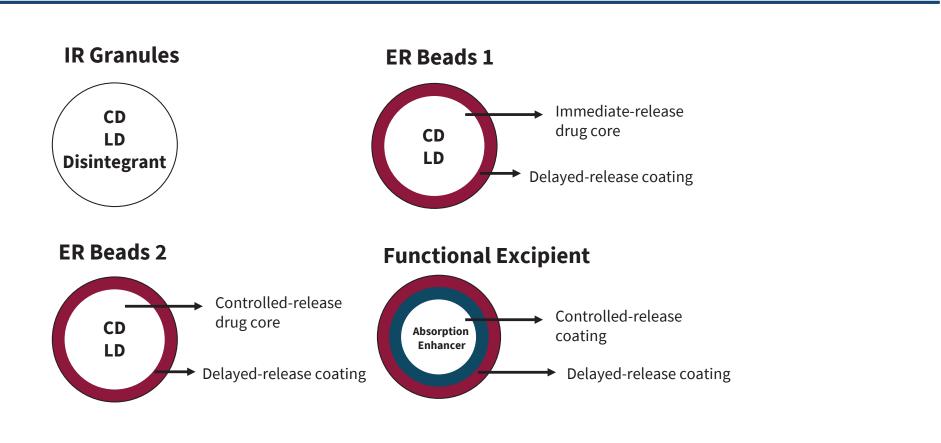
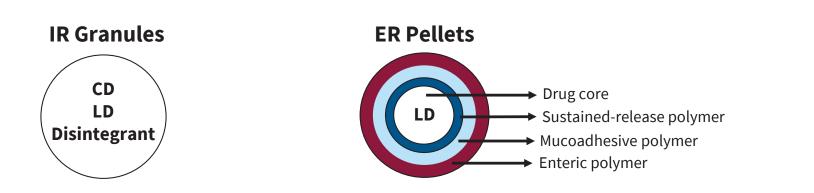
Extended-release carbidopa-levodopa: How is CREXONT[®] different from RYTARY[®]?

¹USF Parkinson's Disease and Movement Disorders Center/Parkinson Foundation Center of Excellence, Tampa, FL, USA; ²Michigan Institute for Neurological Disorders, Farmington Hills, MI, USA; ³Amneal Pharmaceuticals LLC, Bridgewater, NJ, USA


Objective

• To compare two oral extended-release (ER) carbidopa-levodopa (CD-LD) formulations, CREXONT[®] and **RYTARY[®]**


Background

- Rytary is designed to provide fast-acting and long-lasting efficacy, containing four components¹: (Figure 1)
- Immediate-release (IR) granules consist of CD and LD with rapid drug release profile
- Two types of ER beads having distinct release profiles, consist of CD and LD, coated with enteric polymers to allow for the delayed and slower release of CD-LD
- A functional excipient designed to enhance the absorption of LD
- CREXONT is designed to provide fast-acting and long-lasting efficacy and to address the short half-life and limited area of absorption for LD in the gastrointestinal tract; it contains two components²: (Figure 2)
- IR granules consist of CD and LD with a disintegrant polymer to allow for rapid dissolution
- ER pellets consist of LD coated with a sustained-release polymer to allow for slow release of the drug, a mucoadhesive polymer to keep the beads adhered to the area of absorption longer, and an enteric polymer to prevent the beads from disintegrating too early in the stomach

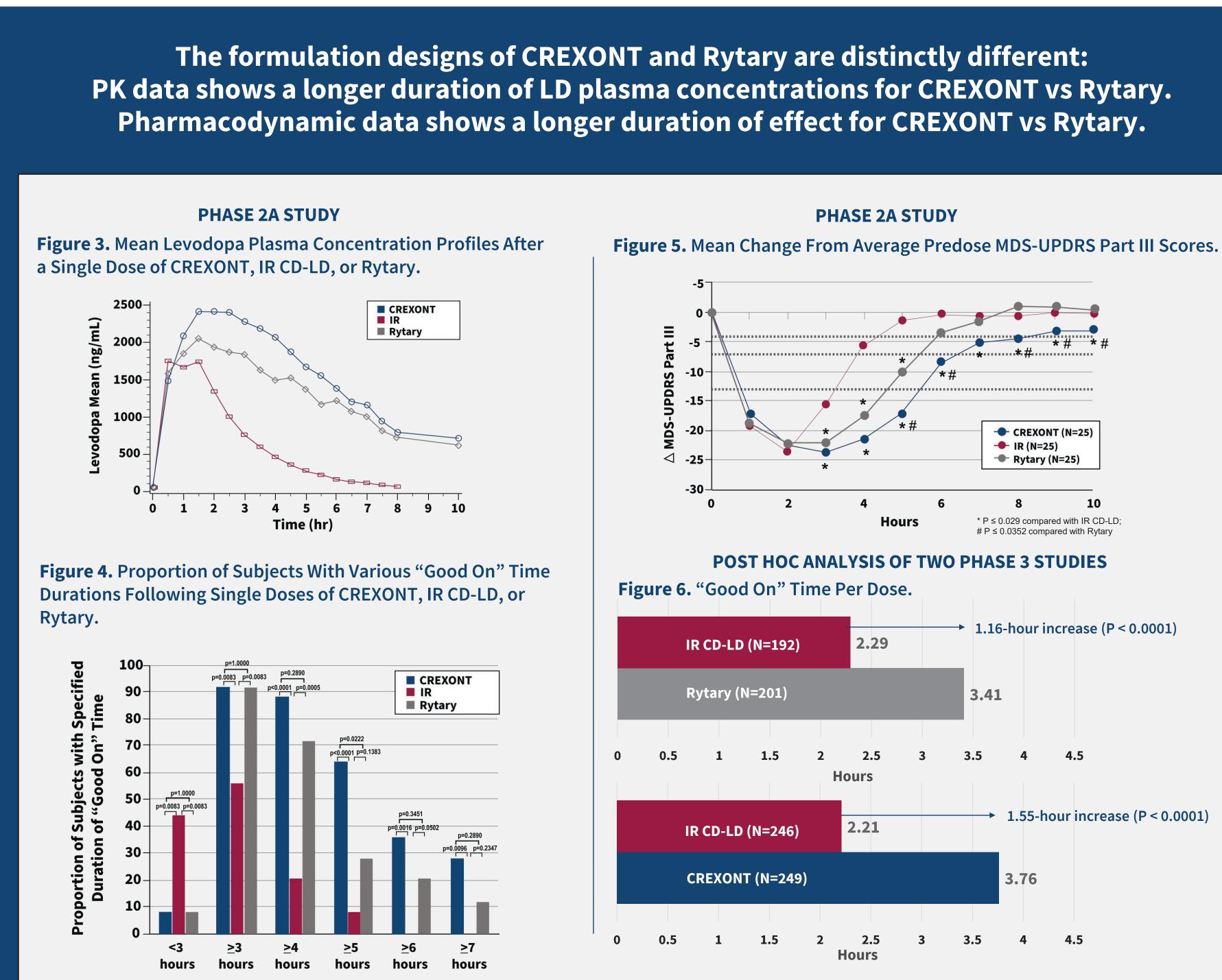

Figure 1. Rytary Formulation.

Figure 2. CREXONT Formulation.

Robert A. Hauser¹, Aaron Ellenbogen², Ghazal Banisadr³, Stanley Fisher³, Richard D'Souza³

Presented at the 5th Pan American Parkinson's Disease and Movement Disorders Congress, February 9-11, 2024, Cartagena, Colombia. Data from Amneal Pharmaceuticals LLC.

* P ≤ 0.029 compared with IR CD-LD # P \leq 0.0352 compared with Rytary → 1.16-hour increase (P < 0.0001)</p> → 1.55-hour increase (P < 0.0001)</p>

Methods

- patients with motor fluctuations
- double-blind trials

Results

<u>Phase 2a study:</u>

- and 3.9 hours for CREXONT and Rytary, respectively³ (**Figure 3**)
- 0.023)³
- "Good On" time compared with Rytary (**Figure 4**)³

- significance (*P* = 0.0601) (**Figure 5**)

Phase 3 studies:

hours for CREXONT vs IR CD-LD⁵ (**Figure 6**)

Conclusions

- **CREXONT vs Rytary**

References

1. Mittur A, et al. *Clin Pharmacokinet*. 2017;56(9):999-1014. 2. LeWitt P, et al. *Clinical Parkinsonism &* Related Disorders 2023; https://doi.org/10.1016/j.prdoa.2023.100197. 3. Modi NB, et al. Clin Neuropharmacol. 2019;42(1):4-8. 4. Hauser RA, et al. Parkinsonism and Related Disorders. 2021;82:133-137. 5. Hauser RA, et al. *JAMA Neurol*. 2023;80(10):1062-1069.

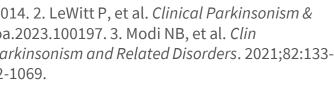
• Phase 2a study: The pharmacokinetics (PK) and pharmacodynamics of CREXONT and Rytary were compared in a single-dose, open-label, rater-blinded, multicenter study in Parkinson's disease (PD)

• Phase 3 studies: "Good On" time per dose was analyzed from two separate phase 3, randomized,

• Results from a single-dose, open-label, phase 2a study in PD patients with motor fluctuations indicated that LD plasma concentrations were sustained >50% maximum concentration (C_{max}) for 4.6

• In the single-dose, phase 2 study, the mean "Off " time was 4.5 hours following CREXONT treatment and 5.4 hours following Rytary, demonstrating a 0.9-hour advantage for CREXONT over Rytary (*P* =

• The reduction in "Off " time with CREXONT was accompanied by a corresponding increase in "Good On" time, demonstrating 0.9 hours more "Good On" time vs Rytary ($P \le 0.0259$). Following treatment with CREXONT, a significantly larger proportion of subjects achieved at least 4, 5, 6, and 7 hours of


• After CREXONT treatment, subjects experienced significantly greater improvement (decrease) from average predose Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III scores over 10 hours vs Rytary (-12.70 vs - 9.33 units; P = 0.0333)³ (**Figure 5**)

• Improvements in MDS-UPDRS part III scores were similar for CREXONT and Rytary treatments during the first 2 hours, consistent with the PK findings and suggestive of a similar onset of effect

• When examined hour by hour, CREXONT showed significant differences vs Rytary from 5-10 hours (all $P \le 0.0352$), except at 7 hours where the improvement did not reach statistical

• Post hoc analysis of "Good On" time per dose, derived from separate phase 3, randomized, doubleblind trials, showed an increase of 1.16 hours for Rytary compared to IR CD-LD,⁴ vs an increase of 1.55

• PK data indicated a longer duration of LD plasma concentrations for CREXONT vs Rytary • Pharmacodynamic data indicated a longer duration of effect and improved MDS-UPDRS scores for

